
  

  

Abstract—This paper explores the use of an outcome matrix 
as a computational representation of social interaction suitable 
for implementation on a robot or software agent. An outcome 
matrix expresses the reward afforded to each interacting 
individual with respect to pairs of potential behaviors. We 
detail the use of the outcome matrix as a representation of 
interaction in social psychology and game theory, present a 
formal notation based on these fields for describing interaction, 
and contribute a novel algorithm for creating outcome matrices 
from perceptual information and predefined knowledge. We 
also explore the representation’s sensitivity to different types of 
error and present results showing that, in many cases, outcome 
matrices are not affected by error and uncertainty. Experiments 
are conducted in a novel simulation environment with the 
potential to aid the repeatability of human-robot interaction 
experiments. 

I. INTRODUCTION 

ANY  scientists have recently come to recognize the 
social aspects of intelligence [1]. In contrast to purely 
cognitive intelligence, which is most often described 

by problem solving ability and/or declarative knowledge 
acquisition and usage, social intellect revolves around an 
individual’s ability to effectively understand and respond in 
social situations [2]. Compelling neuroscientific and 
anthropological evidence is beginning to emerge supporting 
theories of social intelligence [3, 4]. From a roboticist’s 
perspective, it then becomes natural to ask how this form of 
intelligence could play a role in the development of an 
artificially intelligent robot. As an initial step, one must first 
consider which concepts are most important to social 
intelligence.  

Social interaction is one fundamental concept [5]. Social 
psychologists define social interaction as influence—verbal, 
physical, or emotional—by one individual on another [6]. If 
a goal of artificial intelligence is to understand, imitate, and 
interact with humans then researchers must develop 
computational representations for interaction that will allow 
an artificial system to: (1) use perceptual information to 
generate its representation for interaction; (2) represent its 
interactions with a variety of human partners in numerous 
different social environments; and (3) afford the robot 
guidance in selecting interactive actions.  

This paper presents a representation that allows a robot to 
manage these challenges. A general, established, 
computational representation for social interaction that is not 
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tied to specific social environments or paradigms is 
presented [7, 8]. Moreover, we contribute an algorithm that 
allows a robot to create representations of its social 
interactions. High fidelity simulation results demonstrate our 
algorithm in several different domains and with numerous 
different types of partners. Moreover, we investigate the 
robustness of this representation when faced with several 
types of errors. Overall, the purpose of this paper is to 
introduce the outcome matrix as an important potential 
representation of social interaction in artificial systems.    

The remainder of this paper begins by first summarizing 
relevant research. Next, we present a representation for 
social interaction and argue why this representation is 
suitable for implementation on a robot. We then present our 
algorithm for populating the representation with information. 
This article concludes with experiments demonstrating the 
resiliency of the representation to different types of error and 
a discussion of these results including directions for future 
research.  

II.  RELATED WORK 

Representations for interaction have a long history in 
social psychology and game theory [7, 8]. Interdependence 
theory, a type of social exchange theory, is a psychological 
theory developed as a means for understanding and 
analyzing interpersonal situations and interaction [8]. The 
term interdependence specifies the extent to which one 
individual of a dyad influences the other. Interdependence 
theory is based on the claim that people adjust their 
interactive behavior in response to their perception of a 
social situation’s pattern of rewards and costs. Thus, each 
choice of interactive behavior by an individual offers the 
possibility of specific rewards and costs—also known as 
outcomes—after the interaction. Interdependence theory 
represents interaction and social situations computationally 
as an outcome matrix (figure 1). An outcome matrix 
represents an interaction by expressing the outcomes 
afforded to each interacting individual with respect each pair 
of potential behaviors chosen by the individuals.  

Game theory also explores interaction. Moreover, game 
theory has been described as “a bag of analytical tools” to 
aid one’s understanding of strategic interaction [7]. As a 
branch of applied mathematics, game theory thus focuses on 
the formal considerations of strategic interactions, such as 
the existence of equilibriums and economic applications [9]. 
Game theory uses the normal form game as its representation 
of interaction. This normal form game is equivalent to social 
psychology’s outcome matrix. Numerous researchers have 
used game theory to control the behavior of artificial agents 
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in multi-agent environments [10]. We, however, know of no 
direct exploration of the outcome matrix as a means of 
representing human-robot interaction.  
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Figure 1. Example outcome matrices are depicted above. The 
right hand side depicts an outcome matrix representing an 
actual interaction encountered by the robot in the experiments. 
The left hand side depicts a social situation. Social situations 
abstractly represent all interactions with the same outcome 
values.  

 This work differs from much of current human-robot 
interaction research in that our work investigates theoretical 
aspects of human-robot interaction. Typically, HRI research 
explores the mechanisms for interaction, such as gaze 
following, smooth pursuit, face detection, and affect 
characterization [11]. 

III.  REPRESENTING SOCIAL INTERACTION 

 As mentioned in the preceding section, the outcome 
matrix (see figure 1 for an example) is a standard 
computational representation for interaction [7, 8]. It is 
composed of information about the individuals interacting, 
including their identity, the interactive actions they are 
deliberating over, and scalar outcome values representing the 
reward minus the cost, or the outcomes, for each individual. 
Thus, an outcome matrix explicitly represents information 
that is critical to interaction. Typically, the identity of the 
interacting individuals is listed along the dimensions of the 
matrix. Figure 1 depicts an interaction involving two 
individuals. For this paper the term individual is used to 
indicate either a human or a social robot or agent. We will 
focus on interaction involving two individuals—dyadic 
interaction. An outcome matrix can, however, represent 
interaction involving more than two individuals. The rows 
and columns of the matrix consist of a list of actions 
available to each individual during the interaction. Finally, a 
scalar outcome is associated with each action pair for each 
individual. Outcomes represent unitless changes in the robot, 
agent, or human’s utility. Thus, for example, an outcome of 
zero reflects the fact that no change in the individual’s utility 
will result from the mutual selection of that action pair.  
 The outcome matrix also contains information relating to 
Theory of Mind [12]. Theory of mind describes that ability 
of an individual to attribute particular mental states to other 
individuals. Accurate population of an outcome matrix 
requires the ability to calculate the outcome values for 

another individual. Moreover, creation of an outcome matrix 
assumes the ability to determine which actions are possible 
or even probable a partner. Thus, as a representation of 
interaction, the outcome matrix highlights the role of Theory 
of Mind that is necessary for proper interaction. 

A. Outcome Matrix Notation 

 Because outcome matrices are computational 
representations, it is possible to describe them formally. 
Doing so allows for powerful and general descriptions of 
interaction. In this section, we present a formal notation for 
interaction drawing heavily from game theory [7, 9]. A 
representation of interaction consists of 1) a finite set N of 
interacting individuals; 2) for each individual Ni ∈  a 

nonempty set iA  of actions; 3) the utility obtained by each 
individual for each combination of actions that could have 

been selected [9]. Let  ii
j Aa ∈  be an arbitrary action j from 

individual i’s set of actions. Let ( )N
kj aa ,,1

K  denote a 

combination of actions, one for each individual, and let iu  

denote individual i’s utility function: ( ) ℜ→N
kj

i aau ,,1
K  

is the utility received by individual i if the individuals choose 

the actions ( )N
kj aa ,,1

K . 

 The term O  is used to denote an outcome matrix. The 
superscript -i is used to express individual i's partner. Thus, 

for example, iA  denotes the action set of individual i and 
iA−  denotes the action set of individual i’s interactive 

partner. A particular outcome can also be expressed as a 
function of an outcome matrix and an action pair, thus for 

two interacting individuals ( ) 1
11

2
1

1
1

1 , oaaO =  and 

( ) 2
11

2
1

1
1

2 , oaaO = . In words, the selection of action 11a  by 

individual 1 and action 2
1a  by individual 2 results in 

outcome 1
11o  for individual 1 and 2

11o  for 2. Applied to 

figure 1 ( ) 9, 2
1

1
1

1 =aaO  and ( ) 4, 2
1

1
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B. Representing social situations 

 The term interaction describes a discrete event in which 
two or more individuals select interactive behaviors as part 
of a social situation or social environment. Interaction has 
been defined as influence—verbal, physical, or emotional—
by one individual on another [6]. The term situation has 
several definitions. The most apropos for this work is “a 
particular set of circumstances existing in a particular place 
or at a particular time [13].” A social situation, then, 
characterizes the environmental factors, outside of the 
individuals themselves, which influence interactive behavior. 
A social situation is abstract, describing the general pattern 
of outcome values in an interaction. An interaction, on the 
other hand, is concrete with respect to the two or more 
individuals and the social actions available to each 
individual. For example, the prisoner’s dilemma describes a 



  

particular type of social situation. As such, it can, and has 
been, instantiated in numerous different particular social 
environments ranging from bank robberies to the trenches of 
World War I [14]. Interdependence theorists state that 
interaction is a function of the individuals interacting and of 
the social situation [15]. Although a social situation may not 
afford interaction, all interactions occur within some social 
situation. Interdependence theory represents social situations 
involving interpersonal interaction as outcome matrices (see 
figure 1 for a graphical depiction of the difference). 
 In previous work, we presented a situation analysis 
algorithm that calculated characteristics of the social 
situation or interaction (such as interdependence) when 
presented with an outcome matrix [16]. These characteristics 
were then used to influence the robot’s action selection. Our 
results showed that by analyzing the situation, the robot 
could better select interactive actions. Thus, using an 
outcome matrix as a representation of interaction can benefit 
the robot in terms of selecting the best action.   

C. Action selection strategies 

 As mentioned in section I, a computational representation 
for interaction should afford the robot guidance in selecting 
interactive actions. Outcome matrices afford several simple 
action selection strategies. The most obvious method for 
selecting an action from an outcome matrix is to choose the 
action that maximizes the robot’s outcome. This strategy is 
termed  max_own. An individual’s use of the max_own 
strategy results in egoistic interactive behavior. 
Alternatively, the robot may select the action that maximizes 
its partner’s outcome, a strategy termed max_other. An 
individual’s use of the max_other strategy results in altruistic 
behavior. Yet another action selection strategy is for the 
robot to select the action that maximizes the sum of its and 
its partner’s outcome. The use of this strategy results in a 
cooperative style of behavior. Outcome matrices afford many 
other simple action selection strategies (see [16] for other 
examples).    
 If we are to use the outcome matrix as a representation of 
interaction for a robot, it becomes critical to develop 
algorithms for creating outcome matrices. In the next section, 
we present a preliminary algorithm capable of generating 
outcome matrices. 

IV.  FROM INTERACTION TO OUTCOME MATRIX  

Figure 2 depicts our algorithm for generating outcome 
matrices from social interaction. The algorithm takes as input 
a partner type, robot type, and environment type. The 
algorithm returns an outcome matrix representing the social 
interaction faced by the robot. Overall, the algorithm acts as 
a stepwise method for filling in the information contained 
within an outcome matrix. The first line creates an empty 
matrix—a matrix devoid of information pertaining to the 
interactive partner, any actions, or outcome values.  
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Figure 2. An algorithm for outcome matrix creation is 
presented above. The algorithm takes the environment, robot, 
and partner type as input. The algorithm acts as a stepwise 
method for adding the information required by the outcome 
matrix.  

The second line sets the identification of the partner in 
the outcome matrix to their type. This line simplifies a 
process that we expect will become more complex in future 
refinements of this algorithm. In future work, perceptual 
characteristics of the partner will be used to construct the 
partner’s identification. For example, perceptual features 
such as male or female, hair color and body type could all be 
used to construct the identification of a new partner. Other 
perceptual features will relate to the partner’s type. For 
example, a badge could be used to distinguish a police 
officer from a firefighter. Perceptual information will also be 
used to determine the type of environment. For example, 
smoke could be used to indicate a search and rescue 
environment. 

The third line sets the action set for the environment type, 
partner type, and robot type (table 1 lists the different partner 
and environment types). Associative memory was used to 
assign the actions sets from the different types.   

The fourth line constructs the robot’s action set for the 
interaction. This step uses knowledge of what actions the 

robot can perform ( )*iA  and what actions can be performed 

in a given environment ( )eA  to construct a set of actions 

that the robot can perform in the environment. The fifth step 
constructs the partner’s action set in the same manner and 
assumes that the robot knows what actions the partner can 

perform ( )*iA− . We are currently developing algorithms 

that will allow the robot to learn this information. In the sixth 
step, the rows and columns of the outcome matrix are set to 
the robot and partner’s action sets.   



  

Table 1.  The different environment, partner, and robot 
types. 

Environment 
Type 

Partner Type Robot Type 

assistive police officer police officer aid 

household firefighter firefighter aid 

museum 
accident 
victim 

medical aid 

prison 
hospital 
patient 

 

search and 
rescue 

citizen  

 medical staff  
Lines seven through nine populate the empty outcome 

matrix with outcome values. This is accomplished by 

iterating through all pairs of actions ( )i
j

i
j aa −,  and for each 

pair using the individual’s utility function to produce the 
outcome value. These steps assume that robot has a utility 
function both for itself and for its partner.  

Finally, line ten returns the matrix.  
Clearly, the use of this algorithm requires a great deal of 

knowledge on the part of the robot. The robot must have 
information not only about its partner, but also about the 
environment and itself. This begs two important questions: 
1) where does this information come from? and 2) how 
accurate must this information be? We are currently working 
to address the first question by developing algorithms that 
will allow the robot to learn much of this information. We 
address the second question in the experiments presented 
below.  

V. SIMULATION ENVIRONMENT 

We conducted simulation experiments to test the 
proposed algorithm. Our experimental environment was built 
on USARsim, a collection of robot models, tools, and 
environments for developing and testing search and rescue 
algorithms in high-fidelity simulations [17]. USARsim’s 
robot models have been shown to realistically simulate actual 
robots in the same environment [18]. Moreover, USARsim 
provides support for sensor and camera models that allow a 
user to simulate perceptual information in a realistic manner. 
USARsim is freely available online.  

USARsim is built on Epic’s Unreal Tournament (UT) 
game engine. Unreal Tournament is a popular 3D first 
person shooter game. Unreal Tournament’s game engine 
produces a high-quality graphical simulation environment 
that includes the kinematics and dynamics of the 
environment. Numerous tools for the creation of new 
environments, objects, and characters are included with the 
game. These tools can be used to rapidly prototype novel 
environments at minimal cost. Moreover, numerous 
complete environments and decorative objects are freely 
available online. Figure 3 depicts several examples of 
environments we created for this work using Unreal 
Tournament tools.  

Collectively, USARsim and Unreal Tournament offer the 
exciting possibility of creating standard testbeds for HRI. 
For example, the environments created as part of this work 
were loosely designed from the setup of Georgia Tech’s 
Mobile Robot Laboratory. Carpin et al. describe a process 
for creating high fidelity environments from CAD models of 
actual search and rescue arenas [18]. Using this method, 
precise simulation environments of HRI laboratories could 
also be created. In this manner, standard environments for a 
household robot, search and rescue robot, and assistive robot 
could potentially be created from actual homes, disaster 
sites, and hospitals. Once posted on the internet, these 
simulation environments could then be used by others to 
confirm or test HRI algorithms and architectures.    

 
Figure 3. Screenshots from the simulation environment are 
depicted above. The top left shows a household environment. 
The top right depicts a museum environment. The bottom right 
shows the prison environment. These three screenshots are from 
the robot’s perspective. The bottom left illustrates the system of 
colored lines used to aid the robot’s navigation to different parts 
of each environment.  

We created five different environments to test the 
generality of our algorithm. The household environment 
modeled a small studio apartment and contained couches, a 
bed, a television, etc. (figure 3 top left). The museum 
environment modeled a small art and sculpture gallery and 
contained paintings, statues, and exhibits (figure 3 top right). 
The prison environment modeled a small prison and 
contained weapons, visiting areas, and a guard station (figure 
3 bottom right). The search and rescue environment modeled 
a disaster area and contained debris fields, small fires, 
victims, and a triage area. Finally, the assistive environment 
modeled a small hospital or physical therapy area and 
contained equipment for physical, art, music and 
occupational therapy. Each of the environments contained 
colored lines on the floor that helped the robot navigate to 
different locations in the environment (figure 3 bottom left 
for example). Line following code, created using OpenCV, 
allowed the simulated robot to follow the lines to different 
parts of the environment. These color lines simply aided 
navigation and had no impact on the algorithm itself.   



  

The USARsim model of the Sony AIBO was used in all 
experiments. The robot used speech synthesis to 
communicate questions and information to the human 
partner. Speech recognition translated the spoken 
information provided by the human. Microsoft’s Speech 
SDK provided the speech synthesis and recognition 
capabilities.  

 
Figure 4. The interface used by the robot’s human partner is 
illustrated above. The software allows the human partner to 
view and move through the environment. Speech is used to 
communicate with the robot. This software was developed from 
tools provided in the USARSim package [19]. 

For our experiments, the robot’s human partner used the 
interface depicted in figure 4 to interact with the robot. This 
interface was developed from an existing USARsim tool 
[19]. The interface allows the human to move around and 
view the environment. The human interacted with the robot 
by speaking a predefined list of commands.  

VI.  EXPERIMENTS 

 Several experiments were performed using the simulation 
environment. The first experiment demonstrates the use of 
the algorithm in several different environments. Additional 
experiments examine the sensitivity of the outcome matrix to 
different types of error.  

A. Experimental setup 
 In order to conduct the experiments, actions sets and 
utility functions needed to be developed for the robot and its 
partner. The action set for the robot was created by reasoning 
about the types of actions a Sony AIBO robot might be 
capable of in a particular environment. For example, the 
robot can use its lights and speakers to alert nearby people, 
use its camera to observe scenes, use its wireless card to send 
this information to an observation station, and guide a human 
to a location in the environment. The action set for the 
human was derived by reasoning about the types of actions 
available to a police officer, firefighter, victim, citizen, 
medical staff, and hospital patient in each of the 
environments (see table 2 for a list of example actions).  
Utility functions were created by reasoning about the 
ordering of each individual’s actions in an environment 
(creating a preference relation over the actions). Once the 
individual’s actions were ordered, an action in the list was 

selected to be the zero point. The distance from the zero 
point determined the action’s outcome value. The value for 
action pairs was determined by summing the value for each 
individual action. For example, if the robot’s ordered action 
list is alert-guards and observe-exhibit and the 
partner’s ordered action list of actions is perform-CPR 
and rescue-person and the utility of observe-
exhibit and perform-CPR are set to zero then utility of 
each action is alert-guards=1, observe-
exhibit=0, perform-CPR=0, and rescue-person=-
1. The utility of the action pairs would then be (alert-
guard, perform-CPR) =1 (alert-guard, rescue-
person) =0, (observe-exhibit, perform-CPR) =0, 
and (observe-exhibit, rescue-person) =-1.  

Table 2.  Example actions for different types of individuals.  

Partner 
Type 

Example 
actions 

Robot 
type 

Example actions 

police 
officer 

perform-CPR, 
arrest-person, 
search-home 

police 
aid 

alert-guards, alert-
security, observe-

exhibit 

fire 
fighter 

perform-CPR, 
fight-fire, 

rescue-person 

fire 
fighter 

aid 

alert-victim, alert-fire, 
guide-to-victim 

accident 
victim 

crawl, limp, 
moan 

medical 
aid 

guide-to-victim, 
guide-to-triage, alert-

medical-staff 

hospital 
patient 

get-food, do-art-
therapy, watch-

TV 
  

citizen 
watch-scene, 

talk, run-away 
  

medical 
staff 

stabilize-person, 
treat-illness, 
assess-person 

  

 All experiments consisted of a Sony AIBO ERS robot 
and a human partner (the experimenter) interacting in one of 
the five different environments (see table 1). Before 
interacting, the robot and the partner were assigned types 
from the list in Table 1.  

 Each interaction began with the assignment of a type for 
the robot, the partner, and the environment. These types 
served as input to the algorithm in figure 2. As discussed in 
section 4, the algorithm then produces an outcome matrix 
representing the interaction. In all of the experiments, the 
robot used a max_own strategy to select its interactive 
action. Using the lines depicted in figure 3 to navigate to a 
location, the robot would then perform the action. The 
interaction ended once the robot performed the action. 

B. Matrix generation 
 We tested the algorithm in simulation in each of the five 
different environments (from table 1) and with the robot 
acting as either a police aid, firefighter aid, or medical aid. 
Table 3 presents the actions selected by the robot for each 
environment and robot type. The actions are generally type 
and environment specific. For example, the robot performs 
actions related to its role as a medical aid when it is assigned 
the role of medical aid. In the case when the robot is 



  

assigned the role of firefighter aid, it selects the same action, 
alert-victim, regardless of the type of environment. 
This is because the robot’s action set for the firefighter aid 
type remained relatively constant for each environment when 
acting as this type.  

C. Errors in outcome value 
 A common concern about the outcome matrix as a 
representation for interaction is that it consists of a daunting 
amount of information about both individuals and the social 
situation. These experiments address this concern by 
showing that the outcome matrix often selects the correct 
action in spite of significant errors in outcome value. 
Moreover, we show that the performance of the outcome 
matrix degrades gracefully as the number of errors in the 
matrix increases.   

Table 3.  Actions selected in different environments and 
different robot types. The partner was of type police officer.  

 Environment Type 

Robot 
Type 

Assistive Househd Mus. Prison 
Search 
and 
Rescue 

Police 
Aid 

alert-
security 

oblert-
security 

oblert-
security 

guide-
to-alarm 

alert-
victim 

Fire 
Aid 

alert-
victim 

alert-
victim 

alert-
victim 

alert-
victim 

alert-
victim 

Med. 
Aid 

guide-to-
movemt-
therapy 

assist-
movemt-
therapy 

oblert-
security 

alert-
guards 

guide-to-
victim 

 The data presented in the following subsections was 
collected from every combination of environment (5), robot 
type (3) and human type (6). Thus, 90 simulations were run 
to study each type of outcome matrix error. 
 One potential type of outcome matrix inaccuracy is an 
error in the value of an outcome. As mentioned in section 3, 
outcome values are the scalar numbers produced by the 
robot’s utility function to populate the outcome matrix. 
Further, these values constitute the basis on which the robot 
will select an interactive action. A robot using a max_own 
action selection strategy would, for example, select the 
action resulting in the largest outcome value for itself. It 
would therefore seem that accurate outcome values are 
critical for this representation. As we show below, this is not 
the case.        

1) Errors in magnitude 
 An error of magnitude is an error in the utility function in 
which all outcome values are greater or less than their true 
value. Consider the example matrix from figure 1. Using a 
max_own action selection strategy the robot would select the 
alert-fire action because the action pair (alert-
fire, fight-fire) results in the largest outcome for 
the robot. Even if a utility function error results in an 
increase of all outcomes by 10, the robot will still select the 
same action. Moreover, the same is true of any type of 
systematic error (dividing by a positive value, multiplying by 
a positive number, etc.) that alters the magnitude of all 
values but does not alter their overall rank order in terms of 

outcome. These types of errors will not affect the ability of 
the robot to select the correct action. 
2) Errors of single outcome values 
 Errors in magnitude affect all outcome values. What 
about errors that do not affect all outcome values?  In 
contrast to an error in magnitude, errors with respect to 
single outcome values may result in a new ordering of 
actions. These errors occur when the robot’s utility function 
generates inaccurate values with respect to particular action 
pairs. To reproduce this type of error, first the utility function 
produced outcome values for a matrix (for each combination 
of environment, partner type, and robot type). Next, random 
outcome values were selected and these values were 
randomly changed to produce outcome matrix errors. This 
type of error results in incorrect action if one of two 
conditions are met: 1) the current maximum outcome value is 
selected for change, the new value is less then the second 
largest value, and the second largest value does not occur in 
the same column as the old maximum value; 2) the selected 
outcome value does not occur in the same column as the 
current maximum value and the new value is greater than the 
current maximum value. Consider again the example from 
figure 1. The first condition is met when the outcome value 
for the action pair (alert-fire, fight-fire) is 
randomly selected and changed to a value less than 12 
resulting in the robot choosing action guide-to-victim. 
The second condition is met if an outcome value in the 
column for guide-to-victim is selected and changed to 
a value greater than 15. We examined the impact of these 
types of errors experimentally. Figure 5 shows our results.  
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Figure 5. The graph depicts the percent of incorrect actions 
selected as a function of increasing random outcome 
replacement. A y-axis value of 1.00 represents total selection of 
incorrect actions. The bold black line depicts the average 
incorrect actions selected for all environments. The individual 
colored lines represent changes in accuracy for each different 
environment. The bold white line is a baseline for comparison, 
depicting a linear decrease in accuracy. 

 The dependent variable for all experiments is the 
percentage of incorrect actions selected by the robot. The 
percent of incorrect actions selected was calculated by 
comparing an outcome matrix with random errors to a matrix 
with no random errors added. The independent variable for 
this experiment was the percent of outcome values replaced 



  

with error values within the matrix. The bold black line in 
figure 5 depicts the average result over all five environments. 
Thinner lines depict the results for individual environments. 
The bold white line provides a baseline by depicting the 
expected result if the percent of incorrect actions selected 
increased at a rate equal to the number of errors added to the 
matrix. Thus, if the bold black line is below the bold white 
line, then action selection inaccuracy increases more slowly 
then the rate of errors introduced. The reason for this is that 
many random errors do not meet the conditions listed above, 
and thus do not affect the ability of the matrix to select the 
correct action. In other words, the outcome matrix 
representation degrades gracefully with respect to increasing 
outcome value inaccuracy.  

D. Action set errors 
 In addition to errors involving outcome values, the action 
set from which the outcome matrix is constructed can be 
flawed. In this case, valid actions may have been left out of 
the matrix or actions unsuitable for the environment may 
have been inserted. The subsections below investigate both 
of these types of errors.   

1) Action deletion errors 
 An action deletion error occurs when an action, suitable 
for the robot’s environment, has been left out of the matrix. 
This type of error can occur whenever the robot lacks a good 
model of its own actions. Even more likely, the matrix may 
contain omissions with respect to the actions of the robot’s 
partner.  The effect of action deletion errors with respect to 
the partner depends on the action selection strategy. The 
deletion of any one action only affects the matrix’s accuracy 
when the action that would have otherwise been selected is 

deleted. The probability that this is not the case is 
m

m 1−
, 

where m is the number of columns in the matrix. Hence, 
action deletion is less likely to affect the matrix when actions 
are deleted from larger matrices and impact of these 
deletions will increase approximately linearly as the size of 
the matrix decreases. We see again, that, on average, the 
accuracy of the outcome matrix representation degrades 
gracefully with respect to increasing error.   
 The dependent variable for this experiment was the 
percentage of incorrect actions selected by the robot. The 
independent variable was the percentage of actions deleted 
from the matrix. Again, the bold black line in figure 6 
depicts the average over all environments and the bold white 
line provides a baseline for comparison. The graph shows 
that the number of incorrect actions selected increases at 
approximately the same rate as the number of actions deleted 
from the matrix. In other words, the accuracy of an outcome 
matrix is approximately equal to the number of actions 
deleted (assuming no other types of errors).    
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Figure 6. The graph depicts the percent of incorrect actions 
select as a function of increasing random action deletion. The 
bold black line depicts the average incorrect actions selected for 
all environments. The individual colored lines represent 
changes in accuracy for each different environment. The bold 
white line is a baseline for comparison, depicting a linear 
decrease in accuracy. 

2) Action insertion errors 
 An outcome matrix can also contain actions that are not 
possible given the type of environment. Moreover, because 
each invalid action results in several invalid outcome values, 
these types of errors have the potential to flood the outcome 
matrix with improper outcome values. An action insertion 
error results in the incorrect selection of an action only if one 
of the outcome values for the new action is greater then the 
outcome values for all other actions. In other words, an error 
only occurs if the incorrectly inserted action adds a new 
maximum value to the matrix. Because an incorrectly added 
action may not result in a new maximum value for the 
matrix, the percentage of incorrect actions selected by the 
robot is expected to increase less than the rate of the number 
of insertion errors added.   
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Figure 7. The graph depicts the percent of incorrect actions 
select as a function of increasing random action insertion. As in 
the other graphs the bold black line depicts the average 
incorrect actions selected for all environments, the colored lines 
represent the changes in accuracy for each different 
environment, and the bold white line is a baseline for 
comparison, depicting a linear decrease in accuracy.    

 Figure 7 confirms this expectation. Here again we see 
that the bold black line is below the bold white line 



  

indicating that action selection accuracy decreases more 
slowly then the rate that incorrect actions are inserted. 
 Many of our results assumed the use of the max_own 
action selection strategy. These results also apply if other 
action selection strategies, such as the max_other strategy, 
are used instead. 

VII.  SUMMARY AND CONCLUSIONS 

 This paper has introduced a computational representation 
for interactions and social situations suitable for 
implementation on a robot or software agent. We have 
discussed the composition of this representation, its ability to 
represent both interactions and social situations, and formal 
operations related to the representation. Moreover, we have 
presented a preliminary algorithm for the creation of the 
representation. This paper has also described the use of an 
exciting and largely unexplored simulation environment that 
could improve the repeatability of HRI experiments. Finally, 
we have experimentally examined the effect of different 
types of errors on the accuracy of the representation.  
 In this paper, we have shown that outcome matrices are 
capable of representing interactions with a variety of 
different human partners and afford the robot guidance in 
selecting interactive actions. We demonstrated the use of an 
algorithm for creating outcome matrices in several different 
environments and with different robot types. Additionally 
our results show that, on average, outcome matrices degrade 
gradually to errors in outcome value, action insertion errors, 
and action deletion errors. Moreover, we have shown that 
outcome matrices are unaffected by errors that do not alter 
the action preference relation. These results are important 
because they affect the development of algorithms that will 
produce these outcome matrices from interactions. Further, 
because interaction often entails a large amount of 
uncertainty, the results are critical as they show that the 
information that composes an outcome matrix does not need 
to be perfectly accurate in order for the matrix to be of use.  
 Nevertheless, our work leaves many questions open. 
Although we present a general algorithm for creating 
outcome matrices, our algorithm assumes a great deal of 
knowledge on the part of the robot. To be precise, we 
assume the robot maintains a utility function for itself and its 
partner as well as knowledge relating to which actions are 
possible in a given environment. We are currently 
developing algorithms that will allow the robot to learn the 
information assumed in this work. Future work will also 
allow the robot to use and reason about its and its partner’s 
type. Together, we expect these advances to allow the robot 
to learn from and reason about its human partners—one 
small step towards artificial social intelligence. 
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