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Abstract—This paper explores the use of an outcome matrix tied to specific social environments or paradignss i

as a computational representation of social interdion suitable
for implementation on a robot or software agent. Anoutcome
matrix expresses the reward afforded to each inteding
individual with respect to pairs of potential behavors. We
detail the use of the outcome matrix as a represeatton of
interaction in social psychology and game theory, rpsent a
formal notation based on these fields for describiy interaction,
and contribute a novel algorithm for creating outcane matrices
from perceptual information and predefined knowledge. We
also explore the representation’s sensitivity to ferent types of
error and present results showing that, in many cass, outcome
matrices are not affected by error and uncertainty Experiments
are conducted in a novel simulation environment wh the
potential to aid the repeatability of human-robot nteraction

experiments.
M social aspects of intelligence [1]. In contrasptoely
cognitive intelligence, which is most often desedb
by problem solving ability and/or declarative knedge
acquisition and usage, social intellect revolvesuad an
individual's ability to effectively understand améspond in
social situations [2]. Compelling neuroscientificnda
anthropological evidence is beginning to emerggstmg
theories of social intelligence [3, 4]. From a rbbist's
perspective, it then becomes natural to ask hosvftrim of
intelligence could play a role in the developmeifitam
artificially intelligent robot. As an initial stemne must first

I. INTRODUCTION

ANY scientists have recently come to recognize th

presented [7, 8]. Moreover, we contribute an atbarithat
allows a robot to create representations of itsiasoc
interactions. High fidelity simulation results denstrate our
algorithm in several different domains and with muous
different types of partners. Moreover, we invegtgshe
robustness of this representation when faced watrersi
types of errors. Overall, the purpose of this pajseto
introduce the outcome matrix as an important paéent
representation of social interaction in artificsgstems.

The remainder of this paper begins by first sumniragi
relevant research. Next, we present a represemtdtio
social interaction and argue why this representati®
suitable for implementation on a robot. We therspnt our
algorithm for populating the representation witformation.
This article concludes with experiments demonstigatihe
resiliency of the representation to different typégrror and
§ discussion of these results including directiforsfuture
research.

Il. RELATED WORK

Representations for interaction have a long history
social psychology and game theory [7, 8]. Interdeleace
theory, a type of social exchange theory, is a lpsipgical
theory developed as a means for understanding and
analyzing interpersonal situations and interacti8h The
term interdependence specifies the extent to widnk
individual of a dyad influences the other. Interelegience

consider which concepts are most important to $ocitheory is based on the claim that people adjusir the

intelligence.
Social interaction is one fundamental concept $sjcial

psychologists defingocial interactionas influence—verbal,

physical, or emotional—by one individual on anotf@&r If
a goal of artificial intelligence is to understanmajtate, and

interactive behavior in response to their perceptad a
social situation’s pattern of rewards and costsusJheach
choice of interactive behavior by an individual es the
possibility of specific rewards and costs—also knoas
outcomes—after the interaction. Interdependenceoryhe

interact with humans then researchers must develogpresents interaction and social situations coatjputally

computational representations for interaction thiit allow
an artificial system to: (1) use perceptual infotiora to
generate its representation for interaction; (Present its
interactions with a variety of human partners inrmeoous
different social environments; and (3) afford thebat
guidance in selecting interactive actions.

This paper presents a representation that allowbat to
manage these challenges. A (general,
computational representation for social interacthmat is not
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as an outcome matrix (figure 1). An outcome matrix
represents an interaction by expressing the outsome
afforded to each interacting individual with respeach pair
of potential behaviors chosen by the individuals.

Game theory also explores interaction. Moreovemeaya
theory has been described as “a bag of analyticdt to
aid one’s understanding of strategic interactioh s a

establishdédanch of applied mathematics, game theory thussfes on

the formal considerations of strategic interactiosisch as
the existence of equilibriums and economic appticat [9].
Game theory uses the normal form game as its rexpiason
of interaction. This normal form game is equivalensocial
psychology's outcome matrix. Numerous researchense h
used game theory to control the behavior of aigifiagents



in multi-agent environments [10]. We, however, knofano
direct exploration of the outcome matrix as a meahs
representing human-robot interaction.

Example Outcome Matrices

Example Social Situation Example Interaction
Individual 1 Robot
1 1 uide-to-  alert-fire
a g
& 2 victim
9 7 E 9 7
N2 £ perform-
g A 4 6 & crr 4 6
S c
S 12 15 I 12 15
l €
= ;2 3 fight-fire
&l s 7 T v 5 7

Figure 1. Example outcome matrices are depicted ake. The
right hand side depicts an outcome matrix represeing an
actual interaction encountered by the robot in theexperiments.
The left hand side depicts a social situation. Satdi situations
abstractly represent all interactions with the sameoutcome
values.

This work differs from much of current human-robo o
interaction research in that our work investigate=oretical denote individual’s utility function: U’ (aj

aspects of human-robot interaction. Typically, HB$earch
explores the mechanisms for interaction, such aze g
following, smooth pursuit, face detection, and eiffe
characterization [11].

Ill. REPRESENTINGSOCIAL INTERACTION

As mentioned in the preceding section, the outcome, -i
is a standar

matrix (see figure 1 for an example)
computational representation for interaction [7, 8] is
composed of information about the individuals iatging,
including their identity, the interactive actionkey are
deliberating over, and scalar outcome values reptew the
reward minus the cost, or the outcomes, for eadivigtual.
Thus, an outcome matrix explicitly represents infation
that is critical to interaction. Typically, the idtity of the
interacting individuals is listed along the dimems of the
matrix. Figure 1 depicts an interaction involvingvot
individuals. For this paper the term individual used to
indicate either a human or a social robot or agéfd. will
focus on interaction involving two individuals—dyad
interaction. An outcome matrix can, however, repn¢s
interaction involving more than two individuals. &mows
and columns of the matrix consist of a list of awet
available to each individual during the interacti®imally, a
scalar outcome is associated with each actionfpaieach
individual. Outcomes represent unitless changdisaemobot,
agent, or human’s utility. Thus, for example, aticome of
zero reflects the fact that no change in the imtligl’s utility
will result from the mutual selection of that actipair.

The outcome matrix also contains information ietato
Theory of Mind [12]. Theory of mind describes tledility
of an individual to attribute particular mentaltegato other
individuals. Accurate population of an outcome imatr
requires the ability to calculate the outcome valder

another individual. Moreover, creation of an outeomatrix
assumes the ability to determine which actionsparssible
or even probable a partner. Thus, as a represemtafi
interaction, the outcome matrix highlights the roferheory
of Mind that is necessary for proper interaction.

A. Outcome Matrix Notation

Because outcome matrices are computational
representations, it is possible to describe themmddly.
Doing so allows for powerful and general descripgicof
interaction. In this section, we present a formahation for
interaction drawing heavily from game theory [7,. %
representation of interaction consists of 1) atdirdietN of

interacting individuals; 2) for each individudl(OJN a

nonempty setA' of actions; 3) the utility obtained by each
individual for each combination of actions that kcbhave

been selected [9]. Leaij O A" be an arbitrary actiopfrom

individual i's set of actions. Lel(a% yeus ,akN) denote a

tcombination of actions, one for each individuald det ui

al) - O

is the utility received by individualif the individuals choose

athe actions(a} ooy a,i\'

The termO is used to denote an outcome matrix. The
superscripti is used to express individuigd partner. Thus,

for example, A denotes the action set of individuand

denotes the action set of individugs interactive
8artner. A particular outcome can also be expressed
function of an outcome matrix and an action pdiyst for

two interacting individuals Ol(all,af)= 0%1 and
Oz(ail,af) = 0121. In words, the selection of actioall by
individual 1 and actionaf by individual 2 results in

outcome Oil for individual 1 and 0121 for 2. Applied to
figure 1 Ol(ail,af) =9 andOz(all,af) =4.
B. Representing social situations

The term interaction describes a discrete evenmthich
two or more individuals select interactive behasias part
of a social situation or social environment. Intti@n has
been defined as influence—verbal, physical, or @nat—
by one individual on another [6]. The term situatibas
several definitions. The most apropos for this wak'a
particular set of circumstances existing in a palér place
or at a particular time [13].” A social situatiothen,
characterizes the environmental factors, outside thaf
individuals themselves, which influence interactbehavior.
A social situation is abstract, describing the gehpattern
of outcome values in an interaction. An interaction the
other hand, is concrete with respect to the twommare
individuals and the social actions available to heac
individual. For example, the prisoner’s dilemmadatd®s a



particular type of social situation. As such, incand has
been, instantiated in numerous different particidacial

environments ranging from bank robberies to thednes of
World War | [14]. Interdependence theorists stabat t
interaction is a function of the individuals intetiag and of
the social situation [15]. Although a social sitaatmay not
afford interaction, all interactions occur withinnse social
situation. Interdependence theory represents ssitigdtions
involving interpersonal interaction as outcome foat (see
figure 1 for a graphical depiction of the differejc

In previous work, we presented a situation anslys

algorithm that calculated characteristics of thecialo
situation or interaction (such as interdependeneBin
presented with an outcome matrix [16]. These charistics
were then used to influence the robot’s actionctiele. Our
results showed that by analyzing the situation, rbleot
could better select interactive actions. Thus, gisen
outcome matrix as a representation of interactam lmenefit
the robot in terms of selecting the best action.

C. Action selection strategies

As mentioned in section |, a computational repmeten
for interaction should afford the robot guidanceséiecting
interactive actions. Outcome matrices afford sdvsiraple
action selection strategies. The most obvious naetfow
selecting an action from an outcome matrix is toode the
action that maximizes the robot’s outcome. Thiatstyy is
termed max_own An individual's use of themax_own
strategy results in egoistic interactive
Alternatively, the robot may select the action thmtximizes
its partner's outcome, a strategy termedhx_other An

individual’'s use of thenax_otherstrategy results in altruistic

behavior. Yet another action selection strategyois the
robot to select the action that maximizes the s@itscand
its partner's outcome. The use of this strategyltesn a
cooperative style of behavior. Outcome matricesrdfmany
other simple action selection strategies (see fa6]other
examples).

If we are to use the outcome matrix as a repratentof
interaction for a robot, it becomes critical to d®p
algorithms for creating outcome matrices. In thetisection,
we present a preliminary algorithm capable of gatirg
outcome matrices.

IV. FROM INTERACTION TO OUTCOME MATRIX

Figure 2 depicts our algorithm for generating ouateo
matrices from social interaction. The algorithmeslas input

a partner type, robot type, and environment typee T

algorithm returns an outcome matrix representirggshcial
interaction faced by the robot. Overall, the alton acts as
a stepwise method for filling in the informationntained
within an outcome matrix. The first line creates empty
matrix—a matrix devoid of information pertaining the
interactive partner, any actions, or outcome values

Outcome Matrix Creation

Input: Environment typee [ E , partner typet " 0T ™,
robot typet' OT".
Output: Outcome matrixO representing an interaction.

Create empty matri© .
Set O .partner=t ™
Set A" = f(t'); A" =g(t™); A* = h(e)
A ={aj|a; 0A""a| OA%}
A" ={a]' |a] DA *a]' DA%}
Set O .columns= A", O .rows=A"
For each action paiaij ,a;i in A, A™
O'(a,a) « u'fal,a).
o™ (a'j,a,;') ~u” (ak",a'j).
End
Return O.

1.
2.
3.
4.
5.
6.
7.
8.
0.

[y
o

Figure 2. An algorithm for outcome matrix creation is
presented above. The algorithm takes the environménrobot,
and partner type as input. The algorithm acts as astepwise
method for adding the information required by the aitcome
matrix.

The second line sets the identification of the muartin

behaviothe outcome matrix to their type. This line simiphf a

process that we expect will become more compleiture
refinements of this algorithm. In future work, peptual
characteristics of the partner will be used to tmcs the
partner’s identification. For example, perceptuahtfires
such as male or female, hair color and body typgdcall be
used to construct the identification of a new partrOther
perceptual features will relate to the partner'pety For
example, a badge could be used to distinguish &epol
officer from a firefighter. Perceptual informatiavill also be
used to determine the type of environment. For giem
smoke could be used to indicate a search and rescue
environment.

The third line sets the action set for the envirentitype,
partner type, and robot type (table 1 lists théedént partner
and environment types). Associative memory was used
assign the actions sets from the different types.

The fourth line constructs the robot's action smt the
interaction. This step uses knowledge of what astithe

robot can perfom(Ai*) and what actions can be performed

in a given environmen(Ae) to construct a set of actions

that the robot can perform in the environment. fittle step
constructs the partner’s action set in the sameneraand
assumes that the robot knows what actions the gracan

perform (A_i*). We are currently developing algorithms

that will allow the robot to learn this informatiolm the sixth
step, the rows and columns of the outcome matexsat to
the robot and partner’s action sets.



Table 1. The different environment, partner, and pbot

Collectively, USARsim and Unreal Tournament offee t

types. exciting possibility of creating standard testbdds HRI.
Environment Partner Tvoe | Robot Tvpe For example, the environments created as partisfvibrk
Type yp yp were loosely designed from the setup of GeorgiahBec
assistive police officer police officer aid ~ Mobile Robot Laboratory. Carpin et al. describeracpss
- - : for creating high fidelity environments from CAD dels of
household f|ref|ghter firefighter aid actual search and rescue arenas [18]. Using thitiote
museum accident medical aid precise simulation environments of HRI laboratoresild
victim also be created. In this manner, standard envirotsfer a
prison hospital household robot, search and rescue robot, andiessisbot
patient could potentially be created from actual homesaster
search and citizen sites, and hospitals. Once posted on the interthetse
rescue simulation environments could then be used by sther
medical staff confirm or test HRI algorithms and architectures.

Lines seven through nine populate the empty outcorgs
matrix with outcome values. This is accomplished b

iterating through all pairs of actior(ﬁij ,aj“) and for each

pair using the individual's utility function to pdoce the
outcome value. These steps assume that robot bibty
function both for itself and for its partner.

Finally, line ten returns the matrix.

Clearly, the use of this algorithm requires a gzl of
knowledge on the part of the robot. The robot mheste
information not only about its partner, but alsmuatbthe
environment and itself. This begs two important sioms:
1) where does this information come from? and 2y ho
accurate must this information be? We are curremtigking
to address the first question by developing alborg that
will allow the robot to learn much of this infornat. We
address the second question in the experimentemiees Figure 3. Screenshots from the simulation environme are
below. depicted above. The top left shows a household eraiment.
The top right depicts a museum environment. The bodom right
shows the prison environment. These three screengbhare from
the robot’s perspective. The bottom left illustrate the system of

We conducted simulation experiments to test theolored lines used to aid the robot's navigation tdifferent parts
proposed algorithm. Our experimental environmert tailt  of each environment.
on USARsim, a collection of robot models, tools,dan
environments for developing and testing search ra@sdue
algorithms in high-fidelity simulations [17]. USARSSs
robot models have been shown to realistically sateuhctual
robots in the same environment [18]. Moreover, USKR
provides support for sensor and camera modelsatlmat a

V. SIMULATION ENVIRONMENT

We created five different environments to test the
generality of our algorithm. The household envirenin
modeled a small studio apartment and containedhesy@a
bed, a television, etc. (figure 3 top left). The s@um
environment modeled a small art and sculpture gakad
i i e N contained paintings, statues, and exhibits (figutep right).
user to simulate perceptual information in a réiglimanner. 14 prison environment modeled a small prison and
USARsim is freely available online. contained weapons, visiting areas, and a guaribstdigure

USARsim is built on Epic’s Unreal Tournament (UT)3 hot1om right). The search and rescue environmemteled
game engine. Unreal Tournament is a popular 3D fir§ yisaster area and contained debris fields, sfival,
person shootgr game. Unreal_ Toumamept’s game @ng{ictims, and a triage area. Finally, the assiséagironment
produces a high-quality graphical simulation envment < a4 a small hospital or physical therapy ared a
that includes the kinematics and dynamics of thgytained equipment for physical, art, music and

env!ronment. Numerous tools for the cr_eat|on of ne\chcupational therapy. Each of the environments ainat
environments, objects, and characters are includttthe colored lines on the floor that helped the robotigate to

game. These tools can be used to rapidly prototypel itrarent locations in the environment (figure 3ttom left
environments  at minimal cost. l\_/loreovgr, NUMETOUR, oyample). Line following code, created usinge@@V,
Complete enylronmgnts and deqoratlve objects agelyfr allowed the simulated robot to follow the linesdifferent
available online. Figure 3 depicts several exampiés parts of the environment. These color lines simpiged

environments we created for this work using Ume"’Havigation and had no impact on the algorithmfitsel
Tournament tools.



The USARsim model of the Sony AIBO was used in akelected to be the zero point. The distance froenztro
experiments. The robot used speech synthesis point determined the action’'s outcome value. Theerdor
communicate questions and information to the humaaction pairs was determined by summing the valueeézh
partner. Speech recognition translated the spokémdividual action. For example, if the robot's orelé action

information provided by the human. Microsoft's Spee list is al ert - guar ds andobser ve- exhi bit and the

SDK provided the speech synthesis and
capabilities.

Head

T

PAN

HA

recognitigrartner’s ordered action list of actions per f or m CPR

and rescue-person and the utility of observe-
exhi bi t andper f or m CPR are set to zero then utility of
each action is alert-guards=1, observe-
exhi bi t =0, per f or m CPR=0, andr escue- per son=-
1. The utility of the action pairs would then bel ért -
guard, perform CPR) =1 (@l ert-guard, rescue-
per son) =0, (obser ve- exhi bit, perform CPR) =0,
and pbser ve- exhi bi t,rescue- person) =-1.

Table 2. Example actions for different types of idividuals.

s

Other: SEN {Type Accsl {Name ACCH {Acceleration 0.00.0.00,0.00} ]

Figure 4. The interface used by the robot’'s human artner is
illustrated above. The software allows the human géner to
view and move through the environment. Speech is ed to

communicate with the robot. This software was deveped from
tools provided in the USARSIm package [19].

For our experiments, the robot's human partner used

interface depicted in figure 4 to interact with tledot. This
interface was developed from an existing USARsiml to

[19]. The interface allows the human to move aroand
view the environment. The human interacted with riteot

by speaking a predefined list of commands.

VI.

Several experiments were performed using the sitioul
environment. The first experiment demonstratesube of
the algorithm in several different environments.daibnal
experiments examine the sensitivity of the outcomagrix to
different types of error.

EXPERIMENTS

A. Experimental setup

In order to conduct the experiments, actions seis
utility functions needed to be developed for theatoand its
partner. The action set for the robot was creayectasoning
about the types of actions a Sony AIBO robot mibkt
capable of in a particular environment. For exampie
robot can use its lights and speakers to alertbyepeople,
use its camera to observe scenes, use its wirededdo send
this information to an observation station, anddgua human
to a location in the environment. The action sat the
human was derived by reasoning about the typestains
available to a police officer, firefighter, victingitizen,
medical staff, and hospital patient
environments (see table 2 for a list of exampléas).
Utility functions were created by reasoning abobe t
ordering of each individual's actions in an envirent
(creating a preference relation over the actiof8)ce the
individual's actions were ordered, an action in lise was

Partner Example Robot .
. Example actions
Type actions type
. perform-CPR, . alert-guards, alert-
police police '
. arrest-person, - security, observe-
officer aid .
search-home exhibit
fire performePR’ _flre alert-victim, alert-fire,
. fight-fire, fighter . o
fighter . guide-to-victim
rescue-person aid
. . . guide-to-victim,
accident crawl, limp, medical . .
s : guide-to-triage, alert-
victim moan aid .
medical-staff
hospital get-food, do-art-
atirzent therapy, watch-
p TV
citizen watch-scene,
talk, run-away
medical stabilize-person
staff treat-illness,
assess-person

All experiments consisted of a Sony AIBO ERS robot
and a human partner (the experimenter) interadtirane of
the five different environments (see table 1). Befo
interacting, the robot and the partner were assignpes
from the list in Table 1.

Each interaction began with the assignment ofpa for
the robot, the partner, and the environment. Thgpes
served as input to the algorithm in figure 2. Ascdissed in
section 4, the algorithm then produces an outcora&ixn
representing the interaction. In all of the expemts, the
robot used amax_own strategy to select its interactive
action. Using the lines depicted in figure 3 toigate to a
location, the robot would then perform the actidrhe
interaction ended once the robot performed th@acti

B. Matrix generation
We tested the algorithm in simulation in eachhaf five
different environments (from table 1) and with trabot

in each of thacting as either a police aid, firefighter aid poedical aid.

Table 3 presents the actions selected by the ralpatach
environment and robot type. The actions are gelyetygie
and environment specific. For example, the robafopms
actions related to its role as a medical aid wihénassigned
the role of medical aid. In the case when the roisot



assigned the role of firefighter aid, it selects game action,

outcome. These types of errors will not affect éfudity of

al ert-victim regardless of the type of environmentthe robot to select the correct action.

This is because the robot’s action set for thdifjnter aid
type remained relatively constant for each envireniwhen
acting as this type.

C. Errors in outcome value

A common concern about the outcome matrix as
representation for interaction is that it consita daunting
amount of information about both individuals and #ocial
situation. These experiments address this concern
showing that the outcome matrix often selects tbeect
action in spite of significant errors in outcomeluea
Moreover, we show that the performance of the auto
matrix degrades gracefully as the number of ermorghe
matrix increases.

Table 3. Actions selected in different environmest and
different robot types. The partner was of type polie officer.

Environment Type

Search

$0b0t Assistive | Househd| Mus. Prison | and

ype Rescue
Police alert- oblert- oblert- guide- alert-
Aid security | security | security | to-alarm | victim
Fire alert- alert- alert- alert- alert-
Aid victim victim victim victim victim
Med. guide-to- | assist- oblert- alert- guide-to-

3 movemt- | movemt- . -
Aid security | guards victim

therapy therapy
The

collected from every combination of environment, (®bot
type (3) and human type (6). Thus, 90 simulatioesewun
to study each type of outcome matrix error.

One potential type of outcome matrix inaccuracyaiis
error in the value of an outcome. As mentionedeictisn 3,
outcome values are the scalar numbers producedhdy
robot’s utility function to populate the outcome tmda
Further, these values constitute the basis on wthiehrobot
will select an interactive action. A robot usingreax_own
action selection strategy would, for example, delde
action resulting in the largest outcome value fself. It
would therefore seem that accurate outcome valuwes
critical for this representation. As we show beldkis is not
the case.

1) Errors in magnitude

An error of magnitude is an error in the utilinttion in
which all outcome values are greater or less thair true
value. Consider the example matrix from figure Lird a

max_ownaction selection strategy the robot would seleet t

alert-fire action because the action paml ért -
fire,
the robot. Even if a utility function error results an
increase of all outcomes by 10, the robot willl stillect the
same action. Moreover, the same is true of any type
systematic error (dividing by a positive value, tiplying by
a positive number, etc.) that alters the magnitofieall
values but does not alter their overall rank oiidelerms of

2) Errors of single outcome values

Errors in magnitude affect all outcome values. Wha
about errors that do not affect all outcome value&?
contrast to an error in magnitude, errors with eespto
sc{ngle outcome values may result in a new ordeihg
actions. These errors occur when the robot’s yfilinction
generates inaccurate values with respect to patiaction
Bairs. To reproduce this type of error, first thidity function
produced outcome values for a matrix (for each doatlon
of environment, partner type, and robot type). Nexthdom
outcome values were selected and these values were
randomly changed to produce outcome matrix errdhss
type of error results in incorrect action if one tfo
conditions are met: 1) the current maximum outceaiae is
selected for change, the new value is less thers¢kend
largest value, and the second largest value doesagar in
the same column as the old maximum value; 2) thertsa
outcome value does not occur in the same columthes
current maximum value and the new value is gretatar the
current maximum value. Consider again the examgpuien f
figure 1. The first condition is met when the out@ovalue
for the action pair dlert-fire, fight-fire) is
randomly selected and changed to a value less i2an
resulting in the robot choosing actigni de-t o-vi cti m
The second condition is met if an outcome valuethia
column forgui de-t o- vi ct i mis selected and changed to
a value greater than 15. We examined the impac¢hexe

data presented in the following subsections waypes of errors experimentally. Figure 5 showsresults.

Representation Sensitivity to Random Outcome
Replacement
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Figure 5. The graph depicts the percent of incorrecactions
selected as a function of increasing random outcome
replacement. A y-axis value of 1.00 represents tdtaelection of
incorrect actions. The bold black line depicts theaverage
incorrect actions selected for all environments. Té individual
colored lines represent changes in accuracy for eadifferent
environment. The bold white line is a baseline focomparison,
depicting a linear decrease in accuracy.

The dependent variable for all experiments is the
percentage of incorrect actions selected by thetrobhe
percent of incorrect actions selected was calcdldty
comparing an outcome matrix with random errors toadrix
with no random errors added. The independent Varitdy
this experiment was the percent of outcome valaptaced

fight-fire) results in the largest outcome for



with error values within the matrix. The bold blalike in
figure 5 depicts the average result over all fimgi®nments.
Thinner lines depict the results for individual enuments.
The bold white line provides a baseline by depirtthe
expected result if the percent of incorrect actisatected
increased at a rate equal to the number of erdusdito the
matrix. Thus, if the bold black line is below theld white
line, then action selection inaccuracy increasesenstowly
then the rate of errors introduced. The reasorthisris that
many random errors do not meet the conditionsdisteove,
and thus do not affect the ability of the matrixselect the
correct action. In other words, the outcome matri
representation degrades gracefully with respeaideasing
outcome value inaccuracy.

D. Action set errors

In addition to errors involving outcome values #ction
set from which the outcome matrix is constructed be
flawed. In this case, valid actions may have be@ndut of
the matrix or actions unsuitable for the environmeray
have been inserted. The subsections below invéstiyath
of these types of errors.

1) Action deletion errors

An action deletion error occurs when an actioritable
for the robot’s environment, has been left outhe matrix.
This type of error can occur whenever the robdtdac good
model of its own actions. Even more likely, the rixamay
contain omissions with respect to the actions ef ritbot’s
partner. The effect of action deletion errors witspect to
the partner depends on the action selection syraf€he
deletion of any one action only affects the masriatcuracy
when the action that would have otherwise beerctleis

m_
deleted. The probability that this is not the case——,
m
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Figure 6. The graph depicts the percent of incorrecactions
select as a function of increasing random action ¢tion. The
bold black line depicts the average incorrect actits selected for
all environments. The individual colored lines repesent
changes in accuracy for each different environmentThe bold
white line is a baseline for comparison, depictinga linear
decrease in accuracy.

2) Action insertion errors

An outcome matrix can also contain actions thatraot
possible given the type of environment. Moreovercause
each invalid action results in several invalid oute values,
these types of errors have the potential to fldeddutcome
matrix with improper outcome values. An action s
error results in the incorrect selection of anactnly if one
of the outcome values for the new action is gretiten the
outcome values for all other actions. In other vgowh error
only occurs if the incorrectly inserted action addsew
maximum value to the matrix. Because an incorreatiged
action may not result in a new maximum value foe th
matrix, the percentage of incorrect actions setedtg the
robot is expected to increase less than the ratteeafiumber
of insertion errors added.

where m is the number of columns in the matrix. Hence,

action deletion is less likely to affect the matniken actions

are deleted from larger matrices and impact of gheg

deletions will increase approximately linearly e size of
the matrix decreases. We see again, that, on aethg
accuracy of the outcome matrix representation dlgyra
gracefully with respect to increasing error.

The dependent variable for this experiment was th

percentage of incorrect actions selected by th@trobhe
independent variable was the percentage of actieteted
from the matrix. Again, the bold black line in figu6
depicts the average over all environments and dife white
line provides a baseline for comparison. The grapbws
that the number of incorrect actions selected smme at
approximately the same rate as the number of ectiefeted
from the matrix. In other words, the accuracy ofoatcome
matrix is approximately equal to the number of @i
deleted (assuming no other types of errors).

Representation Sensitivity to Actions Added

1.00
0.90 A
0.80 A
0.70
SC: 0.60

8 050 1
2040
0.30
0.20
0.10 |
0.00

P

=

0 0.1 0.2

Incorrect Actions Selected

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Actions Added (percent)

Household
Reference

= All environments —=— Assistive
—*— Prison —e— Search

Museum

Figure 7. The graph depicts the percent of incorrecactions
select as a function of increasing random action gertion. As in

the other graphs the bold black line depicts the asrage
incorrect actions selected for all environments, th colored lines
represent the changes in accuracy for each differén
environment, and the bold white line is a baselinefor

comparison, depicting a linear decrease in accuracy

Figure 7 confirms this expectation. Here again see
that the bold black line is below the bold whiteneli



indicating that action selection accuracy decreasese
slowly then the rate that incorrect actions areritesl.

Many of our results assumed the use of rigx_own
action selection strategy. These results also ajfpbgher
action selection strategies, such as rieex_otherstrategy,
are used instead.

VII.

This paper has introduced a computational reptaten
interactions and social situations suitable

SUMMARY AND CONCLUSIONS

for fo

implementation on a robot or software agent. Weehav

discussed the composition of this representatterghility to
represent both interactions and social situatians, formal
operations related to the representation. Moreoverhave
presented a preliminary algorithm for the creatafnthe
representation. This paper has also described sbeofian
exciting and largely unexplored simulation enviramnthat
could improve the repeatability of HRI experimerimally,
we have experimentally examined the effect of déffe
types of errors on the accuracy of the represemati

In this paper, we have shown that outcome matigces
capable of representing interactions with a variety
different human partners and afford the robot guidain
selecting interactive actions. We demonstrateduieeof an
algorithm for creating outcome matrices in sevelifferent
environments and with different robot types. Aduttlly
our results show that, on average, outcome matdegsade
gradually to errors in outcome value, action iniearerrors,
and action deletion errors. Moreover, we have shtvet
outcome matrices are unaffected by errors thatatcater
the action preference relation. These results @u@oitant
because they affect the development of algorithmas will
produce these outcome matrices from interactionsther,
because interaction often entails a large amount
uncertainty, the results are critical as they shbat the
information that composes an outcome matrix dedsneed
to be perfectly accurate in order for the matrivéoof use.

Nevertheless, our work leaves many questions opéﬁ?l

Although we present a general algorithm for creptin
outcome matrices, our algorithm assumes a gredt afea
knowledge on the part of the robot. To be precise,
assume the robot maintains a utility function fself and its
partner as well as knowledge relating to which caxtiare
possible in a given environment.
developing algorithms that will allow the robot larn the
information assumed in this work. Future work wallso
allow the robot to use and reason about its angdatter’s
type. Together, we expect these advances to allewdbot
to learn from and reason about its human partnere—o
small step towards artificial social intelligence.
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