

Abstract—This paper explores the use of an outcome matrix
as a computational representation of social interaction suitable
for implementation on a robot or software agent. An outcome
matrix expresses the reward afforded to each interacting
individual with respect to pairs of potential behaviors. We
detail the use of the outcome matrix as a representation of
interaction in social psychology and game theory, present a
formal notation based on these fields for describing interaction,
and contribute a novel algorithm for creating outcome matrices
from perceptual information and predefined knowledge. We
also explore the representation’s sensitivity to different types of
error and present results showing that, in many cases, outcome
matrices are not affected by error and uncertainty. Experiments
are conducted in a novel simulation environment with the
potential to aid the repeatability of human-robot interaction
experiments.

I. INTRODUCTION

ANY scientists have recently come to recognize the
social aspects of intelligence [1]. In contrast to purely
cognitive intelligence, which is most often described

by problem solving ability and/or declarative knowledge
acquisition and usage, social intellect revolves around an
individual’s ability to effectively understand and respond in
social situations [2]. Compelling neuroscientific and
anthropological evidence is beginning to emerge supporting
theories of social intelligence [3, 4]. From a roboticist’s
perspective, it then becomes natural to ask how this form of
intelligence could play a role in the development of an
artificially intelligent robot. As an initial step, one must first
consider which concepts are most important to social
intelligence.

Social interaction is one fundamental concept [5]. Social
psychologists define social interaction as influence—verbal,
physical, or emotional—by one individual on another [6]. If
a goal of artificial intelligence is to understand, imitate, and
interact with humans then researchers must develop
computational representations for interaction that will allow
an artificial system to: (1) use perceptual information to
generate its representation for interaction; (2) represent its
interactions with a variety of human partners in numerous
different social environments; and (3) afford the robot
guidance in selecting interactive actions.

This paper presents a representation that allows a robot to
manage these challenges. A general, established,
computational representation for social interaction that is not

Manuscript received January 8, 2008.
A. R. Wagner is a doctoral candidate at Georgia Institute of Technology

85 5th Street, Room S27, NW, Atlanta, GA. 30308, USA (phone 1-404-894-
9311; email: alan.wagner@cc.gatech.edu)

tied to specific social environments or paradigms is
presented [7, 8]. Moreover, we contribute an algorithm that
allows a robot to create representations of its social
interactions. High fidelity simulation results demonstrate our
algorithm in several different domains and with numerous
different types of partners. Moreover, we investigate the
robustness of this representation when faced with several
types of errors. Overall, the purpose of this paper is to
introduce the outcome matrix as an important potential
representation of social interaction in artificial systems.

The remainder of this paper begins by first summarizing
relevant research. Next, we present a representation for
social interaction and argue why this representation is
suitable for implementation on a robot. We then present our
algorithm for populating the representation with information.
This article concludes with experiments demonstrating the
resiliency of the representation to different types of error and
a discussion of these results including directions for future
research.

II. RELATED WORK

Representations for interaction have a long history in
social psychology and game theory [7, 8]. Interdependence
theory, a type of social exchange theory, is a psychological
theory developed as a means for understanding and
analyzing interpersonal situations and interaction [8]. The
term interdependence specifies the extent to which one
individual of a dyad influences the other. Interdependence
theory is based on the claim that people adjust their
interactive behavior in response to their perception of a
social situation’s pattern of rewards and costs. Thus, each
choice of interactive behavior by an individual offers the
possibility of specific rewards and costs—also known as
outcomes—after the interaction. Interdependence theory
represents interaction and social situations computationally
as an outcome matrix (figure 1). An outcome matrix
represents an interaction by expressing the outcomes
afforded to each interacting individual with respect each pair
of potential behaviors chosen by the individuals.

Game theory also explores interaction. Moreover, game
theory has been described as “a bag of analytical tools” to
aid one’s understanding of strategic interaction [7]. As a
branch of applied mathematics, game theory thus focuses on
the formal considerations of strategic interactions, such as
the existence of equilibriums and economic applications [9].
Game theory uses the normal form game as its representation
of interaction. This normal form game is equivalent to social
psychology’s outcome matrix. Numerous researchers have
used game theory to control the behavior of artificial agents

A Representation for Interaction

Alan R. Wagner, Member, IEEE

M

in multi-agent environments [10]. We, however, know of no
direct exploration of the outcome matrix as a means of
representing human-robot interaction.

Individual 1
1
1a 1

2a

2
1a

2
2a

In
di

vi
du

al
 2

Robot

guide-to-
victim

alert-fire

perform-
CPR

H
um

an
 P

ar
tn

er

Example Social Situation Example Interaction

Example Outcome Matrices

fight-fire

9

4

7

6

15

7

12

5

9

4

7

6

15

7

12

5

Figure 1. Example outcome matrices are depicted above. The
right hand side depicts an outcome matrix representing an
actual interaction encountered by the robot in the experiments.
The left hand side depicts a social situation. Social situations
abstractly represent all interactions with the same outcome
values.

 This work differs from much of current human-robot
interaction research in that our work investigates theoretical
aspects of human-robot interaction. Typically, HRI research
explores the mechanisms for interaction, such as gaze
following, smooth pursuit, face detection, and affect
characterization [11].

III. REPRESENTING SOCIAL INTERACTION

 As mentioned in the preceding section, the outcome
matrix (see figure 1 for an example) is a standard
computational representation for interaction [7, 8]. It is
composed of information about the individuals interacting,
including their identity, the interactive actions they are
deliberating over, and scalar outcome values representing the
reward minus the cost, or the outcomes, for each individual.
Thus, an outcome matrix explicitly represents information
that is critical to interaction. Typically, the identity of the
interacting individuals is listed along the dimensions of the
matrix. Figure 1 depicts an interaction involving two
individuals. For this paper the term individual is used to
indicate either a human or a social robot or agent. We will
focus on interaction involving two individuals—dyadic
interaction. An outcome matrix can, however, represent
interaction involving more than two individuals. The rows
and columns of the matrix consist of a list of actions
available to each individual during the interaction. Finally, a
scalar outcome is associated with each action pair for each
individual. Outcomes represent unitless changes in the robot,
agent, or human’s utility. Thus, for example, an outcome of
zero reflects the fact that no change in the individual’s utility
will result from the mutual selection of that action pair.
 The outcome matrix also contains information relating to
Theory of Mind [12]. Theory of mind describes that ability
of an individual to attribute particular mental states to other
individuals. Accurate population of an outcome matrix
requires the ability to calculate the outcome values for

another individual. Moreover, creation of an outcome matrix
assumes the ability to determine which actions are possible
or even probable a partner. Thus, as a representation of
interaction, the outcome matrix highlights the role of Theory
of Mind that is necessary for proper interaction.

A. Outcome Matrix Notation

 Because outcome matrices are computational
representations, it is possible to describe them formally.
Doing so allows for powerful and general descriptions of
interaction. In this section, we present a formal notation for
interaction drawing heavily from game theory [7, 9]. A
representation of interaction consists of 1) a finite set N of
interacting individuals; 2) for each individual Ni ∈ a

nonempty set iA of actions; 3) the utility obtained by each
individual for each combination of actions that could have

been selected [9]. Let ii
j Aa ∈ be an arbitrary action j from

individual i’s set of actions. Let ()N
kj aa ,,1

K denote a

combination of actions, one for each individual, and let iu

denote individual i’s utility function: () ℜ→N
kj

i aau ,,1
K

is the utility received by individual i if the individuals choose

the actions ()N
kj aa ,,1

K .

 The term O is used to denote an outcome matrix. The
superscript -i is used to express individual i's partner. Thus,

for example, iA denotes the action set of individual i and
iA− denotes the action set of individual i’s interactive

partner. A particular outcome can also be expressed as a
function of an outcome matrix and an action pair, thus for

two interacting individuals () 1
11

2
1

1
1

1 , oaaO = and

() 2
11

2
1

1
1

2 , oaaO = . In words, the selection of action 11a by

individual 1 and action 2
1a by individual 2 results in

outcome 1
11o for individual 1 and 2

11o for 2. Applied to

figure 1 () 9, 2
1

1
1

1 =aaO and () 4, 2
1

1
1

2 =aaO .

B. Representing social situations

 The term interaction describes a discrete event in which
two or more individuals select interactive behaviors as part
of a social situation or social environment. Interaction has
been defined as influence—verbal, physical, or emotional—
by one individual on another [6]. The term situation has
several definitions. The most apropos for this work is “a
particular set of circumstances existing in a particular place
or at a particular time [13].” A social situation, then,
characterizes the environmental factors, outside of the
individuals themselves, which influence interactive behavior.
A social situation is abstract, describing the general pattern
of outcome values in an interaction. An interaction, on the
other hand, is concrete with respect to the two or more
individuals and the social actions available to each
individual. For example, the prisoner’s dilemma describes a

particular type of social situation. As such, it can, and has
been, instantiated in numerous different particular social
environments ranging from bank robberies to the trenches of
World War I [14]. Interdependence theorists state that
interaction is a function of the individuals interacting and of
the social situation [15]. Although a social situation may not
afford interaction, all interactions occur within some social
situation. Interdependence theory represents social situations
involving interpersonal interaction as outcome matrices (see
figure 1 for a graphical depiction of the difference).
 In previous work, we presented a situation analysis
algorithm that calculated characteristics of the social
situation or interaction (such as interdependence) when
presented with an outcome matrix [16]. These characteristics
were then used to influence the robot’s action selection. Our
results showed that by analyzing the situation, the robot
could better select interactive actions. Thus, using an
outcome matrix as a representation of interaction can benefit
the robot in terms of selecting the best action.

C. Action selection strategies

 As mentioned in section I, a computational representation
for interaction should afford the robot guidance in selecting
interactive actions. Outcome matrices afford several simple
action selection strategies. The most obvious method for
selecting an action from an outcome matrix is to choose the
action that maximizes the robot’s outcome. This strategy is
termed max_own. An individual’s use of the max_own
strategy results in egoistic interactive behavior.
Alternatively, the robot may select the action that maximizes
its partner’s outcome, a strategy termed max_other. An
individual’s use of the max_other strategy results in altruistic
behavior. Yet another action selection strategy is for the
robot to select the action that maximizes the sum of its and
its partner’s outcome. The use of this strategy results in a
cooperative style of behavior. Outcome matrices afford many
other simple action selection strategies (see [16] for other
examples).
 If we are to use the outcome matrix as a representation of
interaction for a robot, it becomes critical to develop
algorithms for creating outcome matrices. In the next section,
we present a preliminary algorithm capable of generating
outcome matrices.

IV. FROM INTERACTION TO OUTCOME MATRIX

Figure 2 depicts our algorithm for generating outcome
matrices from social interaction. The algorithm takes as input
a partner type, robot type, and environment type. The
algorithm returns an outcome matrix representing the social
interaction faced by the robot. Overall, the algorithm acts as
a stepwise method for filling in the information contained
within an outcome matrix. The first line creates an empty
matrix—a matrix devoid of information pertaining to the
interactive partner, any actions, or outcome values.

Outcome Matrix Creation

Input : Environment type Ee∈ , partner type ii Tt −− ∈ ,

robot type ii Tt ∈ .

Output : Outcome matrix O representing an interaction.

1. Create empty matrix O .

2. Set O .partner = it −

3. Set)();();(** ehAtgAtfA eiiii === −−

4. }^|{ * ei
j

ii
j

i
j

i AaAaaA ∈∈=

5. }^|{ * ei
j

ii
j

i
j

i AaAaaA ∈∈= −−−−−

6. Set O .columns = iA , O .rows = iA−

7. For each action pair i
k

i
j aa −, in ii AA −,

8. () ()i
k

i
j

ii
k

i
j

i aauaaO −− ← ,, .

9. () ()i
j

i
k

ii
k

i
j

i aauaaO ,, −−−− ← .

 End
10. Return O .

Figure 2. An algorithm for outcome matrix creation is
presented above. The algorithm takes the environment, robot,
and partner type as input. The algorithm acts as a stepwise
method for adding the information required by the outcome
matrix.

The second line sets the identification of the partner in
the outcome matrix to their type. This line simplifies a
process that we expect will become more complex in future
refinements of this algorithm. In future work, perceptual
characteristics of the partner will be used to construct the
partner’s identification. For example, perceptual features
such as male or female, hair color and body type could all be
used to construct the identification of a new partner. Other
perceptual features will relate to the partner’s type. For
example, a badge could be used to distinguish a police
officer from a firefighter. Perceptual information will also be
used to determine the type of environment. For example,
smoke could be used to indicate a search and rescue
environment.

The third line sets the action set for the environment type,
partner type, and robot type (table 1 lists the different partner
and environment types). Associative memory was used to
assign the actions sets from the different types.

The fourth line constructs the robot’s action set for the
interaction. This step uses knowledge of what actions the

robot can perform ()*iA and what actions can be performed

in a given environment ()eA to construct a set of actions

that the robot can perform in the environment. The fifth step
constructs the partner’s action set in the same manner and
assumes that the robot knows what actions the partner can

perform ()*iA− . We are currently developing algorithms

that will allow the robot to learn this information. In the sixth
step, the rows and columns of the outcome matrix are set to
the robot and partner’s action sets.

Table 1. The different environment, partner, and robot
types.

Environment
Type

Partner Type Robot Type

assistive police officer police officer aid

household firefighter firefighter aid

museum
accident
victim

medical aid

prison
hospital
patient

search and
rescue

citizen

 medical staff
Lines seven through nine populate the empty outcome

matrix with outcome values. This is accomplished by

iterating through all pairs of actions ()i
j

i
j aa −, and for each

pair using the individual’s utility function to produce the
outcome value. These steps assume that robot has a utility
function both for itself and for its partner.

Finally, line ten returns the matrix.
Clearly, the use of this algorithm requires a great deal of

knowledge on the part of the robot. The robot must have
information not only about its partner, but also about the
environment and itself. This begs two important questions:
1) where does this information come from? and 2) how
accurate must this information be? We are currently working
to address the first question by developing algorithms that
will allow the robot to learn much of this information. We
address the second question in the experiments presented
below.

V. SIMULATION ENVIRONMENT

We conducted simulation experiments to test the
proposed algorithm. Our experimental environment was built
on USARsim, a collection of robot models, tools, and
environments for developing and testing search and rescue
algorithms in high-fidelity simulations [17]. USARsim’s
robot models have been shown to realistically simulate actual
robots in the same environment [18]. Moreover, USARsim
provides support for sensor and camera models that allow a
user to simulate perceptual information in a realistic manner.
USARsim is freely available online.

USARsim is built on Epic’s Unreal Tournament (UT)
game engine. Unreal Tournament is a popular 3D first
person shooter game. Unreal Tournament’s game engine
produces a high-quality graphical simulation environment
that includes the kinematics and dynamics of the
environment. Numerous tools for the creation of new
environments, objects, and characters are included with the
game. These tools can be used to rapidly prototype novel
environments at minimal cost. Moreover, numerous
complete environments and decorative objects are freely
available online. Figure 3 depicts several examples of
environments we created for this work using Unreal
Tournament tools.

Collectively, USARsim and Unreal Tournament offer the
exciting possibility of creating standard testbeds for HRI.
For example, the environments created as part of this work
were loosely designed from the setup of Georgia Tech’s
Mobile Robot Laboratory. Carpin et al. describe a process
for creating high fidelity environments from CAD models of
actual search and rescue arenas [18]. Using this method,
precise simulation environments of HRI laboratories could
also be created. In this manner, standard environments for a
household robot, search and rescue robot, and assistive robot
could potentially be created from actual homes, disaster
sites, and hospitals. Once posted on the internet, these
simulation environments could then be used by others to
confirm or test HRI algorithms and architectures.

Figure 3. Screenshots from the simulation environment are
depicted above. The top left shows a household environment.
The top right depicts a museum environment. The bottom right
shows the prison environment. These three screenshots are from
the robot’s perspective. The bottom left illustrates the system of
colored lines used to aid the robot’s navigation to different parts
of each environment.

We created five different environments to test the
generality of our algorithm. The household environment
modeled a small studio apartment and contained couches, a
bed, a television, etc. (figure 3 top left). The museum
environment modeled a small art and sculpture gallery and
contained paintings, statues, and exhibits (figure 3 top right).
The prison environment modeled a small prison and
contained weapons, visiting areas, and a guard station (figure
3 bottom right). The search and rescue environment modeled
a disaster area and contained debris fields, small fires,
victims, and a triage area. Finally, the assistive environment
modeled a small hospital or physical therapy area and
contained equipment for physical, art, music and
occupational therapy. Each of the environments contained
colored lines on the floor that helped the robot navigate to
different locations in the environment (figure 3 bottom left
for example). Line following code, created using OpenCV,
allowed the simulated robot to follow the lines to different
parts of the environment. These color lines simply aided
navigation and had no impact on the algorithm itself.

The USARsim model of the Sony AIBO was used in all
experiments. The robot used speech synthesis to
communicate questions and information to the human
partner. Speech recognition translated the spoken
information provided by the human. Microsoft’s Speech
SDK provided the speech synthesis and recognition
capabilities.

Figure 4. The interface used by the robot’s human partner is
illustrated above. The software allows the human partner to
view and move through the environment. Speech is used to
communicate with the robot. This software was developed from
tools provided in the USARSim package [19].

For our experiments, the robot’s human partner used the
interface depicted in figure 4 to interact with the robot. This
interface was developed from an existing USARsim tool
[19]. The interface allows the human to move around and
view the environment. The human interacted with the robot
by speaking a predefined list of commands.

VI. EXPERIMENTS

 Several experiments were performed using the simulation
environment. The first experiment demonstrates the use of
the algorithm in several different environments. Additional
experiments examine the sensitivity of the outcome matrix to
different types of error.

A. Experimental setup
 In order to conduct the experiments, actions sets and
utility functions needed to be developed for the robot and its
partner. The action set for the robot was created by reasoning
about the types of actions a Sony AIBO robot might be
capable of in a particular environment. For example, the
robot can use its lights and speakers to alert nearby people,
use its camera to observe scenes, use its wireless card to send
this information to an observation station, and guide a human
to a location in the environment. The action set for the
human was derived by reasoning about the types of actions
available to a police officer, firefighter, victim, citizen,
medical staff, and hospital patient in each of the
environments (see table 2 for a list of example actions).
Utility functions were created by reasoning about the
ordering of each individual’s actions in an environment
(creating a preference relation over the actions). Once the
individual’s actions were ordered, an action in the list was

selected to be the zero point. The distance from the zero
point determined the action’s outcome value. The value for
action pairs was determined by summing the value for each
individual action. For example, if the robot’s ordered action
list is alert-guards and observe-exhibit and the
partner’s ordered action list of actions is perform-CPR
and rescue-person and the utility of observe-
exhibit and perform-CPR are set to zero then utility of
each action is alert-guards=1, observe-
exhibit=0, perform-CPR=0, and rescue-person=-
1. The utility of the action pairs would then be (alert-
guard, perform-CPR) =1 (alert-guard, rescue-
person) =0, (observe-exhibit, perform-CPR) =0,
and (observe-exhibit, rescue-person) =-1.

Table 2. Example actions for different types of individuals.

Partner
Type

Example
actions

Robot
type

Example actions

police
officer

perform-CPR,
arrest-person,
search-home

police
aid

alert-guards, alert-
security, observe-

exhibit

fire
fighter

perform-CPR,
fight-fire,

rescue-person

fire
fighter

aid

alert-victim, alert-fire,
guide-to-victim

accident
victim

crawl, limp,
moan

medical
aid

guide-to-victim,
guide-to-triage, alert-

medical-staff

hospital
patient

get-food, do-art-
therapy, watch-

TV

citizen
watch-scene,

talk, run-away

medical
staff

stabilize-person,
treat-illness,
assess-person

 All experiments consisted of a Sony AIBO ERS robot
and a human partner (the experimenter) interacting in one of
the five different environments (see table 1). Before
interacting, the robot and the partner were assigned types
from the list in Table 1.

 Each interaction began with the assignment of a type for
the robot, the partner, and the environment. These types
served as input to the algorithm in figure 2. As discussed in
section 4, the algorithm then produces an outcome matrix
representing the interaction. In all of the experiments, the
robot used a max_own strategy to select its interactive
action. Using the lines depicted in figure 3 to navigate to a
location, the robot would then perform the action. The
interaction ended once the robot performed the action.

B. Matrix generation
 We tested the algorithm in simulation in each of the five
different environments (from table 1) and with the robot
acting as either a police aid, firefighter aid, or medical aid.
Table 3 presents the actions selected by the robot for each
environment and robot type. The actions are generally type
and environment specific. For example, the robot performs
actions related to its role as a medical aid when it is assigned
the role of medical aid. In the case when the robot is

assigned the role of firefighter aid, it selects the same action,
alert-victim, regardless of the type of environment.
This is because the robot’s action set for the firefighter aid
type remained relatively constant for each environment when
acting as this type.

C. Errors in outcome value
 A common concern about the outcome matrix as a
representation for interaction is that it consists of a daunting
amount of information about both individuals and the social
situation. These experiments address this concern by
showing that the outcome matrix often selects the correct
action in spite of significant errors in outcome value.
Moreover, we show that the performance of the outcome
matrix degrades gracefully as the number of errors in the
matrix increases.

Table 3. Actions selected in different environments and
different robot types. The partner was of type police officer.

 Environment Type

Robot
Type

Assistive Househd Mus. Prison
Search
and
Rescue

Police
Aid

alert-
security

oblert-
security

oblert-
security

guide-
to-alarm

alert-
victim

Fire
Aid

alert-
victim

alert-
victim

alert-
victim

alert-
victim

alert-
victim

Med.
Aid

guide-to-
movemt-
therapy

assist-
movemt-
therapy

oblert-
security

alert-
guards

guide-to-
victim

 The data presented in the following subsections was
collected from every combination of environment (5), robot
type (3) and human type (6). Thus, 90 simulations were run
to study each type of outcome matrix error.
 One potential type of outcome matrix inaccuracy is an
error in the value of an outcome. As mentioned in section 3,
outcome values are the scalar numbers produced by the
robot’s utility function to populate the outcome matrix.
Further, these values constitute the basis on which the robot
will select an interactive action. A robot using a max_own
action selection strategy would, for example, select the
action resulting in the largest outcome value for itself. It
would therefore seem that accurate outcome values are
critical for this representation. As we show below, this is not
the case.

1) Errors in magnitude
 An error of magnitude is an error in the utility function in
which all outcome values are greater or less than their true
value. Consider the example matrix from figure 1. Using a
max_own action selection strategy the robot would select the
alert-fire action because the action pair (alert-
fire, fight-fire) results in the largest outcome for
the robot. Even if a utility function error results in an
increase of all outcomes by 10, the robot will still select the
same action. Moreover, the same is true of any type of
systematic error (dividing by a positive value, multiplying by
a positive number, etc.) that alters the magnitude of all
values but does not alter their overall rank order in terms of

outcome. These types of errors will not affect the ability of
the robot to select the correct action.
2) Errors of single outcome values
 Errors in magnitude affect all outcome values. What
about errors that do not affect all outcome values? In
contrast to an error in magnitude, errors with respect to
single outcome values may result in a new ordering of
actions. These errors occur when the robot’s utility function
generates inaccurate values with respect to particular action
pairs. To reproduce this type of error, first the utility function
produced outcome values for a matrix (for each combination
of environment, partner type, and robot type). Next, random
outcome values were selected and these values were
randomly changed to produce outcome matrix errors. This
type of error results in incorrect action if one of two
conditions are met: 1) the current maximum outcome value is
selected for change, the new value is less then the second
largest value, and the second largest value does not occur in
the same column as the old maximum value; 2) the selected
outcome value does not occur in the same column as the
current maximum value and the new value is greater than the
current maximum value. Consider again the example from
figure 1. The first condition is met when the outcome value
for the action pair (alert-fire, fight-fire) is
randomly selected and changed to a value less than 12
resulting in the robot choosing action guide-to-victim.
The second condition is met if an outcome value in the
column for guide-to-victim is selected and changed to
a value greater than 15. We examined the impact of these
types of errors experimentally. Figure 5 shows our results.

Representation Sensitivity to Random Outcome
Replacement

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Outcomes Replaced (percent)

In
co

rr
ec

t
A

ct
io

n
 S

el
ec

te
d

(p

er
ce

n
t)

All environments Assistive Household Museum

Prison Search Reference

Figure 5. The graph depicts the percent of incorrect actions
selected as a function of increasing random outcome
replacement. A y-axis value of 1.00 represents total selection of
incorrect actions. The bold black line depicts the average
incorrect actions selected for all environments. The individual
colored lines represent changes in accuracy for each different
environment. The bold white line is a baseline for comparison,
depicting a linear decrease in accuracy.

 The dependent variable for all experiments is the
percentage of incorrect actions selected by the robot. The
percent of incorrect actions selected was calculated by
comparing an outcome matrix with random errors to a matrix
with no random errors added. The independent variable for
this experiment was the percent of outcome values replaced

with error values within the matrix. The bold black line in
figure 5 depicts the average result over all five environments.
Thinner lines depict the results for individual environments.
The bold white line provides a baseline by depicting the
expected result if the percent of incorrect actions selected
increased at a rate equal to the number of errors added to the
matrix. Thus, if the bold black line is below the bold white
line, then action selection inaccuracy increases more slowly
then the rate of errors introduced. The reason for this is that
many random errors do not meet the conditions listed above,
and thus do not affect the ability of the matrix to select the
correct action. In other words, the outcome matrix
representation degrades gracefully with respect to increasing
outcome value inaccuracy.

D. Action set errors
 In addition to errors involving outcome values, the action
set from which the outcome matrix is constructed can be
flawed. In this case, valid actions may have been left out of
the matrix or actions unsuitable for the environment may
have been inserted. The subsections below investigate both
of these types of errors.

1) Action deletion errors
 An action deletion error occurs when an action, suitable
for the robot’s environment, has been left out of the matrix.
This type of error can occur whenever the robot lacks a good
model of its own actions. Even more likely, the matrix may
contain omissions with respect to the actions of the robot’s
partner. The effect of action deletion errors with respect to
the partner depends on the action selection strategy. The
deletion of any one action only affects the matrix’s accuracy
when the action that would have otherwise been selected is

deleted. The probability that this is not the case is
m

m 1−
,

where m is the number of columns in the matrix. Hence,
action deletion is less likely to affect the matrix when actions
are deleted from larger matrices and impact of these
deletions will increase approximately linearly as the size of
the matrix decreases. We see again, that, on average, the
accuracy of the outcome matrix representation degrades
gracefully with respect to increasing error.
 The dependent variable for this experiment was the
percentage of incorrect actions selected by the robot. The
independent variable was the percentage of actions deleted
from the matrix. Again, the bold black line in figure 6
depicts the average over all environments and the bold white
line provides a baseline for comparison. The graph shows
that the number of incorrect actions selected increases at
approximately the same rate as the number of actions deleted
from the matrix. In other words, the accuracy of an outcome
matrix is approximately equal to the number of actions
deleted (assuming no other types of errors).

Representation Sensitivity to Actions Deleted

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Actions Deleted (percent)

In
co

rr
ec

t
A

ct
io

n
s

S
el

ec
te

d

(p
er

ce
n

t)

All environments Assistive Household
Museum Prison Search
Reference

Figure 6. The graph depicts the percent of incorrect actions
select as a function of increasing random action deletion. The
bold black line depicts the average incorrect actions selected for
all environments. The individual colored lines represent
changes in accuracy for each different environment. The bold
white line is a baseline for comparison, depicting a linear
decrease in accuracy.

2) Action insertion errors
 An outcome matrix can also contain actions that are not
possible given the type of environment. Moreover, because
each invalid action results in several invalid outcome values,
these types of errors have the potential to flood the outcome
matrix with improper outcome values. An action insertion
error results in the incorrect selection of an action only if one
of the outcome values for the new action is greater then the
outcome values for all other actions. In other words, an error
only occurs if the incorrectly inserted action adds a new
maximum value to the matrix. Because an incorrectly added
action may not result in a new maximum value for the
matrix, the percentage of incorrect actions selected by the
robot is expected to increase less than the rate of the number
of insertion errors added.

Representation Sensitivity to Actions Added

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Actions Added (percent)

In
co

rr
ec

t
A

ct
io

n
s

S
el

ec
te

d

(p
er

ce
n

t)

All environments Assistive Household Museum
Prison Search Reference

Figure 7. The graph depicts the percent of incorrect actions
select as a function of increasing random action insertion. As in
the other graphs the bold black line depicts the average
incorrect actions selected for all environments, the colored lines
represent the changes in accuracy for each different
environment, and the bold white line is a baseline for
comparison, depicting a linear decrease in accuracy.

 Figure 7 confirms this expectation. Here again we see
that the bold black line is below the bold white line

indicating that action selection accuracy decreases more
slowly then the rate that incorrect actions are inserted.
 Many of our results assumed the use of the max_own
action selection strategy. These results also apply if other
action selection strategies, such as the max_other strategy,
are used instead.

VII. SUMMARY AND CONCLUSIONS

 This paper has introduced a computational representation
for interactions and social situations suitable for
implementation on a robot or software agent. We have
discussed the composition of this representation, its ability to
represent both interactions and social situations, and formal
operations related to the representation. Moreover, we have
presented a preliminary algorithm for the creation of the
representation. This paper has also described the use of an
exciting and largely unexplored simulation environment that
could improve the repeatability of HRI experiments. Finally,
we have experimentally examined the effect of different
types of errors on the accuracy of the representation.
 In this paper, we have shown that outcome matrices are
capable of representing interactions with a variety of
different human partners and afford the robot guidance in
selecting interactive actions. We demonstrated the use of an
algorithm for creating outcome matrices in several different
environments and with different robot types. Additionally
our results show that, on average, outcome matrices degrade
gradually to errors in outcome value, action insertion errors,
and action deletion errors. Moreover, we have shown that
outcome matrices are unaffected by errors that do not alter
the action preference relation. These results are important
because they affect the development of algorithms that will
produce these outcome matrices from interactions. Further,
because interaction often entails a large amount of
uncertainty, the results are critical as they show that the
information that composes an outcome matrix does not need
to be perfectly accurate in order for the matrix to be of use.
 Nevertheless, our work leaves many questions open.
Although we present a general algorithm for creating
outcome matrices, our algorithm assumes a great deal of
knowledge on the part of the robot. To be precise, we
assume the robot maintains a utility function for itself and its
partner as well as knowledge relating to which actions are
possible in a given environment. We are currently
developing algorithms that will allow the robot to learn the
information assumed in this work. Future work will also
allow the robot to use and reason about its and its partner’s
type. Together, we expect these advances to allow the robot
to learn from and reason about its human partners—one
small step towards artificial social intelligence.

ACKNOWLEDGMENT

The author would like to thanks Zsolt Kira and Ron Arkin
for their helpful comments.

REFERENCES

[1] R. W. Byrne and A. Whiten, "Machiavellian intelligence," in
Machiavellian Intelligence II: Extensions and Evaluations, A.
Whiten and R. W. Byrne, eds., Cambridge University Press,
Cambridge, 1997, pp. 1-23.

[2] N. K. Humphrey, "The social function of intellect," in Growing
Points in Ethology, P. P. G. Bateson and R. A. Hinde, eds., 1976, pp.
303-317.

[3] R. Bar-On, D. Tranel, N. L. Denburg, and A. Bechara, "Exploring the
neurlogical substrate of emotional and social intelligence," Brain, vol.
126, 2003, pp. 1790-1800.

[4] T. J. Bergman, J. C. Beehner, D. L. Cheney, and R. M. Seyfarth,
"Hierarchical Classification by Rank and Kinship in Baboons,"
Science, vol. 302, 2003, pp. 1234-1236.

[5] R. A. Hinde, "Can Nonhuman Primates Help Us Understand Human
Behavior?" in Primate Societies, B. B. Smuts, D. L. Cheney, R. M.
Seyfarth, R. W. Wrangham, and T. T. Struhsaker, eds., University of
Chicago Press, Chicago, 1987, pp. 413-420.

[6] D. O. Sears, L. A. Peplau, and S. E. Taylor, Social Psychology.
Prentice Hall, Englewood Cliffs, New Jersey, 1991.

[7] Osborne, M. J., & Rubinstein, A. A course in game theory.
Cambridge, MA: MIT Press, 1994

[8] H. H. Kelley and J. W. Thibaut, Interpersonal Relations: A Theory of
Interdependence. John Wiley & Sons, New York, NY, 1978.

[9] Gibbons, R.. Game theory for applied economists.Princeton, NJ:
Princeton University Press, 1992

[10] Crandall, J. W., & Goodrich, M. A. Multiagent learning during on-
going human-machine interactions: The role of reputation, In AAAI
Spring Symposium: Interaction between Humans and Autonomous
Systems over Extended Operation. Stanford, CA., 2004.

[11] T. Fong, I. Nourbakhsh, and K. Dautenhahn, "A survey of socially
interactive robots," Robotics and Autonomous Systems, vol. 42, 2003,
pp. 143-166.

[12] Premack, D. G. and Woodruff, G. "Does the chimpanzee have a
theory of mind? Behavioral and Brain Sciences, 1, 515-526, 1978.

[13] Situation. In Encarta world English dictionary, north American
edition, 2007.

[14] Axelrod, R. The evolution of cooperation. New York: Basic Books,
1984.

[15] C. E. Rusbult and P. A. M. Van Lange, "Interdependence, Interaction
and Relationship," Annual Review of Psychology, vol. 54, 2003, pp.
351-375.

[16] A. R. Wagner and R. C. Arkin, A Framework for Situation-based
Social Interaction, in Proceedings of the 15th International
Symposium on Robot and Human Interactive Communication (Ro-
Man 2006) Hatfield, United Kingdom, 2006, pp. 351-375.

[17] Stefano Carpin, Jijun Wang, Michael Lewis, Andreas Birk, Adam
Jacoff: High Fidelity Tools for Rescue Robotics: Results and
Perspectives. RoboCup 2005: 301-311

[18] J. Wang, M. Lewis, S. Hughes, M. Koes, and S. Carpin, “Validating
usarsim for use in hri research,” in Proceedings of the Human
Factors and Ergonomics Society 49th Annual Meeting (HFES’05),
2005, pp. 457–461.

[19] Zaratti, M., M. Fratarcangeli, and L. Iocchi, A 3D Simulator of
Multiple Legged Robots based on USARSim, in Proc. of RoboCup
Symposium 2006.

